
Joint Training Federation Prototype (JTFp)Joint Training Federation Prototype (JTFp)
Common-Software Development and UseCommon-Software Development and Use

Presented to:

 9 October 1996
15th AMG Meeting

William F. Waite
AEgis Research Corporation

6703 Odyssey Drive, Huntsville, AL
(205) 922-0802/0904 FAX
BWaite@AEgisRC.com

LT Billy Hudgins
JSIMS/JPO

12249 Science Drive, Ste. 260
(407) 384-5541 / 5599 FAX

hudginsb@jsims.mil

OUTLINEOUTLINE

• JTFp Common Software
Functional (and Structural)
Requirements

• JTFp Common Software Design

• JTFp Common Software
Lessons-Learned

JTFp Common SoftwareJTFp Common Software
Functional RequirementsFunctional Requirements

• ORB OPERATIONS
– Implement compliant interface
(Satisfy API, semantics of functional I/F Spec.)

• REPRESENTATIONAL CONSISTENCY
– Coordinate conversion

• COMPUTATION SERVICES
– Intervisibility and other environmental effects

• EXERCISE MANAGEMENT
– Marshal federates to I.C.
– Instrumentation

• PRESERVE EXECUTION EFFICIENCY

JTFp Common SoftwareJTFp Common Software
Functional Requirements, Cont.Functional Requirements, Cont.

• NETWORK MONITORING
– Network Snooper
– Communication Performance Monitor

• INTEGRATED POST PROCESSING
– On-line After Action Review (AAR)
– On-line Performance Evaluation

• BROKERAGE
– Aggregation / dis-aggregation
– Interest-list management
– Representation domain interactions (L-V, G-S, C-C,
 L-R, etc.)

OUTLINEOUTLINE

• JTFp Common Software
Requirements

• JTFp Common Software Design

• JTFp Common Software
Lessons-Learned

JTFp Common Software JTFp Common Software
Design Approach AlternativesDesign Approach Alternatives

• MIDDLEWARE
– Object Interface
– Representation consistency
– Architectural Services (state saving, etc.)

• SERVICE LIBRARIES
• ADJUNCT DATABASES
• ADJUNCT EXECUTIVE FEDERATES

– Fed.-Controller, -Monitor, Scenario Monitor

• ALLOCATION TO REP. FEDERATE
• BUILT-IN ARTIFACTS

– Federation Status Object, Data Logger

JTFp Common Software JTFp Common Software
Design ApproachDesign Approach

• HYBRID
– Interface development by federate
– Adjunct federation-executive components
– Built-in artifacts
– Allocation of function to representational federate

• INTERFACE DEVELOPMENT BY FEDERATE
– Multiple interfaces developed for re-use
– Variety in packaging interface for comparison

• ADJUNCT FEDERATION-EXECUTIVE
COMPONENTS

– Marshals federation initialization and execution
– Re-usable and adaptable to other federation

JTFp Common Software JTFp Common Software
Design Approach, Cont.Design Approach, Cont.

• BUILT-IN ARTIFACTS
– Incorporated into FOM
– Flexible to customize to federation requirements

• ALLOCATION OF FUNCTION TO
REPRESENTATIONAL FEDERATE

– Provides common representation to all federates
– Single implementation of function

OUTLINEOUTLINE

• JTFp Common Software
Requirements

• JTFp Common Software Design

• JTFp Common Software
Lessons-Learned

JTFp Common SW Lessons-LearnedJTFp Common SW Lessons-Learned
- Pros and Cons -- Pros and Cons -

• JTFp DESIGN PROs
– Met mission requirements
– Consistent with Collaborative JTFp Team Process

and federate constraints
– Components provided unanticipated utility

(e.g. Federation controller served as test driver for
system integration) and prospective re-usability

• JTFp DESIGN CONs
– Required federates to support an additional FOM

object and multiple interactions
– Required federates to perform their own data

logging for off-line post processing.

JTFp Common SW Lessons-LearnedJTFp Common SW Lessons-Learned
- Improvement Opportunities -- Improvement Opportunities -

• AVAILABILITY OF REUSABLE ELEMENTS
– Artifacts
– Federation Components
– Software Designs
– Service Libraries

• GUIDANCE FOR SOFTWARE ARCHITECTURE
TRADES

• USER BINDINGS TO THE RTI

JTFp Common SW Lessons-LearnedJTFp Common SW Lessons-Learned
- Reuse Opportunities -- Reuse Opportunities -

• ARTIFACTS
– Federation Status Object
– Data Loggers’ DIF

• COMPONENTS
– Federation Controller
– Federation Monitor
– Scenario Monitor
– Data Post-Processor

• DESIGNS
– Federate Interface Shells
– Language Bindings

JTFp Lessons-LearnedJTFp Lessons-Learned
- General Observations -- General Observations -

• VARIETY
– Design electives promote variety
– Systems engineering determines outcomes
– Variety implies constraint on A&I substitution of

federates among federations

• FEDERATE CONSTRAINTS
– Development custody and practices
– Existing internal designs and interfaces
– Languages (LISP, C++, Smalltalk)

• GOOD NEWS
– More than one way to successful federations
– Even independent interface design strategy works
– Prospects for SW reuse in HLA are positive

